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Abstract

The angle and energy distributions of Ni ions ejected from

ion bombarded Ni(0O1)q(2x2)-CO are shown to be in excellent agree-

ment with classical trajectory calculations for Ni atoms if the

calculations are corrected for the presence of an image force.

Two important consequences of this observation are that the ioniza-

tion probability, R+, is nearly isotropic and that it is only

weakly dependent on particle velocity. These constraints impose

severe restrictions on proposed ionization theories.
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Ion desorption from solids is a general phenomenon which can be

induced by photon, electron or particle bombardment. The mechanism

of ion formation has been well elucidated when the desorption is

stimulated by photon (1) or electron fields (2), although the processes

which affect ionization during collisions between atoms in a solid remain

quite speculative. This theoretical input is critically needed to

interpret experimental results from a variety of ion scattering experi-

ments including secondary ion mass spectrometry (SIMS). In this paper,

we examine the ionization problem by performing the first detailed

experimental measurements of the angular and energy distributions of

ions ejected due to ion bombardment of a well-defined surface. As a

Q +
model system we have chosen Ni(001) (2x2)-CO bombarded by 1000 eV Ar

at normal incidence since the original surface geometry of CO has been

determined by LEED (3) and since the presence of CO enhances the observed

+Ni yield by more than 4 orders of magnitude over the clean Ni(O01)

*surface (4). The results are in semi-quantitative agreement with classical

dynamical calculations of this system for the neutral particles if their

trajectories are modified by the inclusion of an appropriate image force.

This agreement provides a convincing basis for the classical dynamics

model and suggests that the probability of ionization of the neutral atoms

is isotropic and nearly independent of the ejected particle velocity. The

latter conclusion supports recent theoretical efforts aimed toward provid-

ing physical insight into the ionization process (5) and indicates that

Auger neutralization is not a dominant mechanism.

The angle-resolved SIMS measurements are performed using a specially

designed UHV chamber such that the quadrupole mass filter (Riber AQXl56)
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3.

can be rotated with respect to the primary ion beam. This feature is

achieved using a set of three 56cm differentially pumped teflon seals.

A manipulator for the crystal then provides azimuthal rotation, heating

to 1300*K, cooling to 175 0K, and vertical translation to a LEED apparatus

located on a different level in the chamber. The secondary ions are

then angle and energy selected using a 90* spherical electric sector

in front of the mass analyzer. The calculated polar angle resolution,

based on the size of the apertures and the field-free distance of the

sample from the lens, is estimated to be ±7*. The azimuthal angle

resolution %0 can be approximated from the polar angle, E, since

A@zA/sine. Using a zoom lens arrangement, the bandpass of the analyzer

can be varied from approximately 2 eV for recording energy spectra to nearly

15 eV for obtaining maximum sensitivity. Details of the apparatus will

be available elsewhere (6). The total ion flux during the experiment is

kept below 10 ions/cm to avoid significantly altering the surface structure.

The cut and polished Ni crystal was cleaned in vacuo in the standard fashion.

The clean surface was then exposed to 2 L of CO to obtain a c(2x2) over-

layer geometry.

The calculated energy and angular distributions were determined

using a previously described classical dynamics procedure (7). The initial

nuclear coordinates of the adsorbed CO were taken from LEED measurements (3).

These results indicate that the CO is in a linear bonded site with the

carbon atom 1.76 A above the nickel atom. The exact form and parameters of

the interaction potential have been published elsewhere (7,8). Comparison

between the calculated distributions and the measured ones required the

computation of approximately 1400 Ar+ ion impacts for both clean Ni(001) and

Ni(0Ol)p(2x2)-CO to obtain sufficient statistical accuracy.
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It has generally been observed that energy distributions of ejected

secondary ions are considerably broader than that of the neutrals. For

example, for 1 keV Ar+ on Cu the ion energy distribution peaks at

4 eV and tails off as E- 0.5 while the neutral distribution peaks at 3 eV

and tails off as roughly E 2 (9). Many explanations have been proposed

to explain this effect, although most focus on the possibility that the

primary phenomenon controlling the ionization probability is the Auger

reneutralization rate. In this case, the ionization probability R+ is

a function of ion velocity as (10):

R +t exp(-A/avj) (1)

where A is the Auger transition rate at the surface, a is a critical dis-

tance and v, is the perpendicular velocity component of the ejecting ion.

Values of A/a from 2.5xi05 to 2xi06 cm/sec have been reported (11). On

the other hand, a recent quantum mechanical model of ionization predicts

an which is only a weak function of v (5).

Our calculated energy distributions for Ni atoms ejected from

Ni(O0l) (2x2)-CO are quite different from the rather broad energy dis-

tributions found experimentally for Ni+ ions as shown in Figure 1. We

can obtain reasonable agreement between calculated and experimental

distributions at a polar angle of 30* by correcting the calculated tra-

jectories using Eq. I and an A/a value of l.lxlO 6cm/sec, although computed

energy distributions at other angles then deviate rather dramatically from

experimental curves. As we shall see later, this equation poorly predicts

polar and azimuthal angle Ni+ ion intensities.

In contrast, incorporation of a simple image force allows quantitative

agreement between the calculations of neutral atom trajectories and the
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experimentally measured ion distributions. To overcome the image force

and escape the solid, the ion must perform work, E .mge If it is assumed

that the particle instantaneously becomes an ion, E.iag is given by

E. e 2 3.6eV (2)
image 4z 0

where a 0is the height in Aof the particle above the jellium step-edge

at the instant of ionization. If 8G is the angle of the atom's velocity

vector at this point, the ion emerges with a final direction given by

)an E 0sin 2 0 n 1/2(3

E E 2 nEimage

where 0.1 is the corrected polar ejection angle as measured from the surface

normal of the leaving ion, and E is the kinetic energy of the neutral
0a

particle ejected at polar angle 0 n. The corrected theoretical energy dis-

tribution using E. img= 3.6 eV is also shown in Figure 1. The agreement

with experiment over all polar angles is quite good. Note that in this

comparison we choose a specific value of E.iag without explicitly assuming

the functional form given in Eq. 2.

A further test of the relevance of this correction can also be

developed by comparing neutral and ionic trajectories of Ni at various

polar and azimuthal angles. As shown in Figure 2, a selection of both

2:' low and high kinetic energy particles produces a maximum Ni signal at a

7 polar angle of about S0 . The calculations produce a distribution similar

in shape, which peaks at significantly lower angles. Correction of the

neutral trajectories using Eq. 3 with E iae 3.6 eV however, provides

quantitative agreement in both energy regimes. An E iaevalue other than

3.6t0.3 eV yields a poor fit to the data in Figure 2 and Figure 1. It is
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also Lmportant to note that correction of the calculated trajectories

using Eq. I shifts the polar distributions significantly closer to

the normal than the experimental data.

Information contained in azimuthal angular spectra is more

sensitive to surface structure than either the polar or energy dis-

tributions (12,13). The azimuthal spectra obtained at large polar

angles should be strongly influenced by any image force, since the image

force acts to bend particles originally ejected at smaller polar angles

into the detector. In Figure 3, the angular spectra obtained for 3±3 eV

Ni+ ions ejected from Ni(001)(2x2)-CO are shown at e = 300, 450, 600

and 700. Predicted neutral and image force corrected distributions are

also shown, again derived assuming the same E. value of 3.6 eV. Al-image

though the magnitude of the measured anisotropy is slightly smaller than

calculated at 450 and 300, the level of agreement is quite remarkable.

Note that the calculated distributions are unaffected by the incopora-

* tion of Eq. 1. It is of interest that if the CO is placed in other

bonding geometries, that poor agreement with experiment is found. These

types of angle-resolved experiments, then, should be valuable aids in

the analysis of unknown surface structures.

It is clear that the classical dynamics calculations can provide

an accurate description of ion trajectories with simple inclusion of

an appropriate image force. The agreement between theory and experiment

for Ni trajectories is excellent for energy distributions at various polar

and azimuthal angles. Similar levels of agreement are found for Ni2+

and NiCO+ trajectories, although statistical fluctuations in the theoretical

development so far preclude detailed comparisons. Unfortunately, the CO
+

ion is not experimentally observed.

0 -
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If the above arguments concerning the presence of a relatively

strong image force are correct, there are a number of constraints

placed upon any ionization theory. First, the ion must be formed very

close to the surface. The 1.0 A distance we find for Ni(Ol)k(2x2)-CO

should be viewed only qualitatively since other factors such as satura-

tion of the image force (14) and the change in partial charge on the

ejecting atom with distance (5) are not taken into account with our

simple approach. A second constraint is that for Ni(0Ol) (2x2)-CO, R+

is only weakly dependent on , and is not a measureable function of

ejection angle. These results have only recently been predicted using

a quantum mechanical model (5). This model utilizes the electronic density

of states to calculate electronic hopping probabilities during the atomic

collisions which lead to particle ejection. Although the influence of

R+
ejection angle on R has not been fully tested, it is possible that the

large number of different ejection mechanisms which are observed cause

an averaging of angular anisotropies. At least for Ni(0Ol) (2x2)-CO,

the Auger neutralization mechanism does not appear to be important.

The authors wish to thank the National Science Foundation, The

Office of Naval Research and the Petroleum Research Foundation administered

by The American Chemical Society for financial support. One of us (BJG)

also acknowledges the A. P. Sloan Foundation for a Research Fellowship

and the Camille and Henry Dreyfus Foundation for a grant for newly ap-

pointed young faculty.

A-7



8.

References

1. M. L. Knotek, V. 0. Jones and V. Rehn, Phys. Rev. Lett., 43, 300 (1979).

2. (a) M. L. Knotek and P. J. Feibelman, Phys. Rev. Lett., 40, 964 (1978);

(b) D. Menzel and R. Gomer, J. Chem. Phys., 41, 311 (1964). (c) P. A.

Redhead, Can. J. Phys. 42, 886 (1964).

3. (a) M. Passler, A. Ignatiev, F. Jona, D. W. Jepsen and D. M. Marcus,

Phys. Rev. Lett. 43, 360 (1979); (b) S. Andersson and J. B. Pendry,

Phys. Rev. Lett., 43, 363 (1979).

4. P. H. Dawson and W. Tam, Surface Sci., 91, 153 (1980).
SV V

5. 9. Sroubek, K. ?dansky and J. gavadil, Phys. Rev. Lett., 45, 580 (1980).

6. R. A. Gibbs and N. Winograd, Rev. Sci. Instrum., submitted.

7. N. Winograd, B. J. Garrison and D. E. Harrison, Jr., J. Chem. Phys.,

73, 3473 (1980).

8. D. E. Harrison, Jr., P. W. Kelly, B. J. Garrison and N. Winograd,

Surface Sci., 76, 311 (1978).

9. R. G. Hart and C. B. Cooper, Surface Sci., 94, 105 (1980).

10. H. D. Hagstrum, J. Vac. Sci. Technol., 12, 7 (1975).

11. K. Wittmaack, in: Inelastic Ion-Surface Collisions, Ed. Tolk, Tully,

Heiland and White (Academic Press, N.Y., 1977) p. 153.

12. (a) S. P. Holland, B. J. Garrison and N. Winograd, Phys. Rev. Lett.,

43, 220 (1979); (b) S. P. Holland, B. J. Garrison and N. Winograd,

Phys. Rev. Lett., 44, 3473 (1980).

13. N. Winograd and B. J. Garrison, Accounts of Chem. Res., 13, 406 (1980).

14. R. E. Dietz, E. G. McRae and R. L. Campbell, Phys. Rev. Lett., 45,

1280 (1980).



9.

Figure Captions

Figure 1 - Energy distributions for Ni ejected from Ni(00l) (2x2)-CO

due to bombardment by 1 KeV Ar+ at normal incidence. The polar angle,

6, is defined with respect to the surface normal. The azimuthal angle,

, is along the< 100 > direction for all cases. The three curves in

each panel are identified as follows: - calculated Ni distribution,

-----calculated Ni distribution with inclusion of the image force and

.... experimental points for Ni

Figure 2 - Polar angle distributions for Ni ejected from Ni(001) (2x2)-CO

Experimental conditions and codings for each curve are the same as for

Figure 1. The upper set of curves is recorded for a secondary ion energy

of 7±2 eV while the lower set of curves is taken at 22±2 eV.

Figure 3 - Azimuthal angle distributions at various polar angles for Ni

ejected from Ni(00l)c(2x2)-CO. The curve codings are the same as for

Figure 1. Only those Ni particles with an energy of 3±3 eV are detected.

The value of p=O~corresponds to <100> while t=:450 corresponds to<110 >.
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